Measurement of Relative Cross-Section of $\nu_{ au}$ to ν_{e}

Emily Maher

27 May 2005

Relative Cross Section

The number of observed ν_{τ} interactions is calculated using

$$N_{\nu_{\tau}}^{\text{obs}} = \int N_{\nu_{\tau}}^{\text{on tar}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}^{cc}(E) \cdot n \cdot dE \quad (1)$$

where $N_{\nu_{\tau}}^{\text{obs}}$ is the number of ν_{τ} interactions observed, $N_{\nu_{\tau}}^{\text{on tar}}(E)$ is the number of ν_{τ} 's that traverse the target, $\epsilon_{\nu_{\tau}}$ is the total efficiency, $\sigma_{\nu_{\tau}}^{cc}(E)$ is the cross section of the ν_{τ} , and n is the number of scattering centers per cm^2 in the target.

To calculate the relative cross section, use the following equation:

$$\frac{N_{\nu_{\tau}}^{\text{obs}}}{N_{\nu_{e}}^{\text{obs}}} = \frac{\int N_{\nu_{\tau}}^{\text{on tar}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}^{cc}(E) \cdot n \cdot dE}{\int N_{\nu_{e}}^{\text{on tar}}(E) \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc}(E) \cdot n \cdot dE}$$
(2)

I use ν_e because all are prompt. Since n is the same regardless of the neutrino type, it cancels.

The charged current cross section for ν_e at the typical energies in this experiment is assumed to be linear in energy:

$$\sigma_{\nu_e}^{cc}(E) = E_{\nu_e} \cdot \sigma_{\nu_e \text{ const}}^{cc} \tag{3}$$

where E_{ν_e} is the energy of the ν_e and $\sigma^{cc}_{\nu_e}$ const is the constant part of the cross section. The cross section for the ν_{τ} can be written in terms of the ν_e cross section:

$$\sigma_{\nu_{\tau}}^{cc}(E) = K_F(E) \cdot \sigma_{\nu_{\rho}}^{cc}(E) \tag{4}$$

where $K_F(E)$ is a kinematic term necessary because of the mass of the tau.

Equations 3 and 4 can be combined:

$$\sigma_{\nu_{\tau}}^{cc}(E) = K_F(E) \cdot E_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau} \text{ const}}^{cc}$$
 (5)

If the ν_{τ} is a standard model particle, then:

$$\sigma_{\nu_e \text{ const}}^{cc} = \sigma_{\nu_\tau \text{ const}}^{cc} \tag{6}$$

Substituting equations 3 and 5 into 2:

$$\frac{N_{\nu_{\tau}}^{\text{obs}}}{N_{\nu_{e}}^{\text{obs}}} = \frac{\int N_{\nu_{\tau}}^{\text{on tar}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot K_{F}(E) \cdot E_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}^{cc} \cdot const \cdot dE}{\int N_{\nu_{e}}^{\text{on tar}}(E) \cdot \epsilon_{\nu_{e}} \cdot E_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc} \cdot const \cdot dE} \tag{7}$$

Simplifying this equation:

$$\frac{N_{\nu_{\tau}}^{\text{obs}}}{N_{\nu_{e}}^{\text{obs}}} = \frac{\epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}^{cc} \operatorname{const} \cdot \int N_{\nu_{\tau}}^{\text{on tar}}(E) \cdot K_{F}(E) \cdot E_{\nu_{\tau}} \cdot dE}{\epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc} \operatorname{const} \cdot \int N_{\nu_{e}}^{\text{on tar}}(E) \cdot E_{\nu_{e}} \cdot dE} \tag{8}$$

Solving for $\sigma^{cc}_{\nu_{\tau}}$ const:

$$\sigma_{\nu_{\tau}}^{cc} \text{ const} = \frac{N_{\nu_{\tau}}^{\text{obs}} \cdot \epsilon_{\nu_{e}} \sigma_{\nu_{e}}^{cc} \text{ const} \int N_{\nu_{e}}^{\text{on tar}}(E) E_{\nu_{e}} dE}{N_{\nu_{e}}^{\text{obs}} \cdot \epsilon_{\nu_{\tau}} \int N_{\nu_{\tau}}^{\text{on tar}}(E) K_{F}(E) E_{\nu_{\tau}} dE}$$
(9)

Calculating Parameters

Observed Number of Neutrino Interaction

This number comes from the data and the parameter analysis. Currently (subject to change) the observed numbers are:

$$N_{\nu_{\tau}}^{\text{obs}} = 6 \pm 2.45 \tag{10}$$

and

$$N_{\nu_e}^{\text{obs}} = 160 \pm 13.3$$
 (11)

 \bullet Constant Part of ν Charged Current Cross Section

The measured value for equal parts ν and $\overline{\nu}$ is:

$$\sigma^{cc}(\nu N)/E = 0.505 \pm 0.009 \times 10^{-38} cm^2 GeV^{-1}$$
(12)

which is measured from data for the ν_{μ} (pdg).

Calculating Parameters Cont.

Efficiency

The necessary efficiencies are: ν_e , ν_{τ} kink, and ν_{τ} trident. Each efficiency is the product of the trigger and the selection, which I took from Jason's thesis. The identification efficiencies are also necessary - I discuss each case below.

The identification efficiency for the ν_{τ} relates to the cuts applied:

Criterion	Efficiency (%)
Decay Length	68
Decay Angle	84
Daughter IP	97
Daughter P	96
Daughter P_t	78

Jason used Monte Carlo and found total ϵ for single-prong tau decays to be 38%.

For the trident, the identification efficiency only relates to the decay length (as this is the only cut?). The tau must have at least one emulsion segment (76%) and be less than 10 mm (90%). This leads to an identification efficiency of 68% and a total ϵ of 52%.

The identification efficiency I used for the electron is 73%. This should be a combination of electron ID in the spectrometer and the emulsion - still working on this number.

The efficiencies are summarized in the following table:

Efficiencies (%)				
Type	$ u_{ au}$ kink cc	$ u_{ au}$ trident cc	$ u_e$ cc	
Trigger	97	97	98	
Selection	80	80	80	
Identification	52	68	73	
Total	38	52	57	
Location?				
Parameter?				

ullet Number of u that Traverse the Target

The number of ν s that hit the target is :

$$N_{\nu}^{\text{target}}(E) = N_{\nu}^{\text{prod}} \cdot \frac{dN}{dE} \cdot \eta_{\nu}$$
 (13)

$$N_{\nu}^{\text{prod}} = \sum_{j} \sigma(pN \to C_{j}X) BR(C_{j} \to \nu X) \quad (14)$$

where $C_{i,(j)}$ are the relevant charm particles that produce ν_{τ} 's (ν_{e} 's), $\sigma(pN \to C_{i,(j)}X)$ are the charm production cross sections for 800 GeV protons, $BR(C_{i,(j)} \to \nu_{\tau}X)$ is the branching ratio for these charm particles to $\nu_{\tau} + X$ ($\nu_{e} + X$). C_{i} can be D_{s} or D^{\pm} ; C_{j} can be D_{s} , D^{\pm} , D^{0} , or Λ_{c} .

Since we are interested in the ratio, we can use the following equation:

$$\frac{N_{\nu_{\tau}}^{\text{prod}}}{N_{\nu_{e}}^{\text{prod}}} = \frac{\sum_{j} \sigma(pN \to C_{j}X) BR(C_{j} \to \nu_{\tau}X)}{\sum_{i} \sigma(pN \to C_{i}X) BR(C_{i} \to \nu_{e}X)}$$
(15)

800 GeV Production CS		
in μ barn/nucleon (Reinhard)		
$\sigma(pN \to D_s X)$	5.2 ± 0.8	
$\sigma(pN \to D^{\pm}X)$	11.3 ± 2.2	
$\sigma(pN \to D^0X)$	27.4 ± 2.6	
$\sigma(pN \to \Lambda_c X)$	5.4 ± 2.1	

Branching ratios (pdg)		
$BR(D_s o u_e X)$	8 ± 5.5 %	
$BR(D_s o u_{\tau} X)$	$6.4\pm1.5\%$	
$BR(D^{\pm} \rightarrow \nu_e X)$	$17.2 \pm 1.9 \%$	
$BR(D^{\pm} o u_{\tau} X)$	7.2×10^{-4}	
$BR(D^0 \to \nu_e X)$	$6.9 \pm 0.3 \%$	
$BR(au o u_e X)$	7.8 ± 0.06 %	
$BR(\Lambda_c \rightarrow \nu_e X)$	2.1 ± 0.6 %	

 $\frac{dN_{\nu e}}{dE}$ and $\frac{dN_{\nu \tau}}{dE}$ are the energy spectra of the produced ν_e and $\nu_\tau.$ I produced these distributions using the E872 MC:

The energy spectrum of the produced ν_e .

The energy spectrum of the produced ν_{τ} .

Kinematic Factor

Calculated using the differential cross section of Albright and Jarlskog (Nucl. Phys. B40, 85 (1995)).

Energy Dependence

The constant part of the ν_{τ} cross section, $\sigma^{cc}_{\nu_{\tau} \text{ const}}$, is:

$$\frac{N_{\nu_{\tau}}^{\text{obs}} \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc} \cdot const \cdot N_{\nu_{e}} \cdot \int E_{\nu_{e}} \cdot \frac{dN_{\nu_{e}}}{dE} \cdot dE}{N_{\nu_{e}}^{\text{obs}} \cdot \epsilon_{\nu_{\tau}} \cdot N_{\nu_{\tau}} \cdot \int K_{F}(E) \cdot E_{\nu_{\tau}} \cdot \frac{dN_{\nu_{\tau}}}{dE} \cdot dE}$$

$$\tag{16}$$

Using numerical integration:

$$\frac{\int E_{\nu_e} \cdot \frac{dN_{\nu_e}}{dE} \cdot dE}{\int K_F(E) \cdot E_{\nu_\tau} \cdot \frac{dN_{\nu_\tau}}{dE} \cdot dE} = 0.948 \quad (17)$$

Using this equation and the parameters summarized below:

$$\frac{N_{\nu_{\tau}}^{\text{obs}} \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc} \cdot \sigma_{\nu_{e}}^{cc} \cdot N_{\nu_{e}} \cdot \int E_{\nu_{e}} \cdot \frac{dN_{\nu_{e}}}{dE} \cdot dE}{N_{\nu_{e}}^{\text{obs}} \cdot \epsilon_{\nu_{\tau}} \cdot N_{\nu_{\tau}} \cdot \int K_{F}(E) \cdot E_{\nu_{\tau}} \cdot \frac{dN_{\nu_{\tau}}}{dE} \cdot dE}$$
(18)

Parameter	$ u_e$ value	$ u_{ au}$ value
$N_ u^{obs}$	160 ± 13.3	6 ± 2.45
$\epsilon_{ u}$	0.42	0.33
$N_{ u}$	4.41 ± 2.57	0.682 ± 0.232

$$\sigma^{cc}(\nu N)/E = 0.505 \pm 0.009 \times 10^{-38} cm^2 GeV^{-1}$$

$$\frac{\int E_{\nu_e} \cdot \frac{dN_{\nu_e}}{dE} \cdot dE}{\int K_F(E) \cdot E_{\nu_\tau} \cdot \frac{dN_{\nu_\tau}}{dE} \cdot dE} = 0.948$$

$$\sigma_{\nu_{\tau} \text{const}} = 0.158 \pm 0.126 \times 10^{-38} cm^2 GeV^{-1}$$
(19)

Since we would expect this number to be closer to 0.505, what could cause it to be low?

Efficiencies?

If the total efficiency for the electron is underestimated or the tau efficiency is over estimated

Number of observed events?

If the number of taus is low or (more likely) the number of electrons is high

• Energy dependence?

If there is a problem with my calculation of the energy dependence

Patrick also calculated this, are the results consistent?

Patrick's value is the ratio of ν_{τ} to prompt ν ($\nu_e + \nu_{\mu} + \nu_{\tau}$):

$$\frac{\int E_{\nu_{\text{prompt}}} \cdot \frac{dN_{\nu_{\text{prompt}}}}{dE} \cdot dE}{\int K_F(E) \cdot E_{\nu_{\tau}} \cdot \frac{dN_{\nu_{\tau}}}{dE} \cdot dE} = 0.69 \quad (20)$$

My value is:
$$\frac{\int E_{\nu_e} \cdot \frac{dN_{\nu_e}}{dE} \cdot dE}{\int K_F(E) \cdot E_{\nu_\tau} \cdot \frac{dN_{\nu_\tau}}{dE} \cdot dE} = 0.948$$

If you make the assumption that

$$\int E_{\nu_e} \cdot \frac{dN_{\nu_e}}{dE} \cdot dE = \int E_{\nu_\mu} \cdot \frac{dN_{\nu_\mu}}{dE} \cdot dE \quad (21)$$

One can solve for ν_e/ν_τ using Patrick's value. The result is:

$$\frac{\int E_{\nu_e} \cdot \frac{dN_{\nu_e}}{dE} \cdot dE}{\int K_F(E) \cdot E_{\nu_\tau} \cdot \frac{dN_{\nu_\tau}}{dE} \cdot dE} = 0.23 \qquad (22)$$

Conclusions

• Further investigate efficiencies, particle ID, and produced neutrino energy spectra.